DFG-Sonderforschungsbereich 555 "Komplexe Nichtlineare Prozesse"
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Hahn-Meitner-Institut, Otto-von-Guericke-Universität Magdeburg, Physikalisch-Technische Bundesanstalt, Technische Universität Berlin
Seminar
"Complex Nonlinear Processes
in Chemistry and Biology"
Honorary Chairman: Gerhard Ertl
Organizers: | M. Bär, H. Engel, M. Falcke, M. Hauser, A. S. Mikhailov, P. Plath, H. Stark |
Address: | Richard-Willstätter-Haus, Faradayweg 10, 14195 Berlin-Dahlem. (Click here for a description how to get there.) |
For information please contact Oliver Rudzick, Tel. (030) 8413 5300, rudzick@fhi-berlin.mpg.de.
Atsushi Tero
(Hokkaido University, Sapporo, Japan)
Traffic-adaptive networking by a real amoebae of Physarum
[Abstract]
Toshiyuki Nakagaki
(Hokkaido University, Sapporo, Japan)
Amoebae anticipate periodic events
Abstract:
Single-celled organisms might be cleverer than previously thought.
Anticipating
events are higher functions performed by the brains of higher animals;
their evolutionary origins and the way they self-organize, however,
remain open questions. Here we show that an amoeboid organism can
anticipate the timing of periodic events.
The plasmodium of the true slime mold Physarum polycephalum moves
rapidly under favourable conditions, but stops moving when transferred
to less-favourable conditions. Plasmodia exposed to unfavourable
(low-temperature and low-humidity) conditions,
presented in three consecutive pulses at constant intervals,
reduced their locomotive speed in response to each episode.
When subsequently subjected to favourable conditions,
the plasmodia spontaneously reduced their locomotive speed
at the time point when the next unfavourable episode would have occurred.
This implied anticipation of impending environmental change.
After this behaviour had been evoked several times, the locomotion
of the plasmodia returned to normal.
We explored the mechanisms underlying these behaviours from a
dynamical systems perspective. Our results hint at the cellular
origins of primitive intelligence and imply that simple dynamics
might be sufficient to explain its emergence.
Takao Ohta
(Department of Physics, Kyoto University, Japan)
Turing patterns in three dimensions
[Abstract]
Karsten Kruse
(Theoretische Physik, Universität des Saarlandes)
Active behavior of the cytoskeleton
[Abstract]
Peter Tass
(Institut für Neurowissenschaften und Biophysik, Forschungszentrum Jülich)
Model based development of desynchronizing brain stimulation techniques
[Abstract]
Pablo Kaluza
(Fritz-Haber-Institut der MPG)
Evolutionary design of complex functional networks
[Abstract]
Hans-Günther Döbereiner
(Institut für Biophysik, Universität Bremen)
Dynamic Phase Transitions and Collective Modes in Cell Spreading
[Abstract]
Hiroya Nakao
(Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin)
Phase coherence in an ensemble of uncoupled nonlinear oscillators induced by correlated noise
[Abstract]
Stefan Luther
(Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen)
Noninvasive adaptive multisite pacing of the heart
[Abstract]
Wolffram Schröer
(Institut für Anorganische und Physikalische Chemie, Universität Bremen)
Criticality and corresponding states in ionic systems
[Abstract]
Download the seminar program as PDF (ca. 40 kB)
last modified: January 30, 2008 / Oliver Rudzick