DFG-Sonderforschungsbereich 555 "Komplexe Nichtlineare Prozesse"
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Hahn-Meitner-Institut, Otto-von-Guericke-Universität Magdeburg, Physikalisch-Technische Bundesanstalt, Technische Universität Berlin
Seminar
"Complex Nonlinear Processes
in Chemistry and Biology"
Honorary Chairman: Gerhard Ertl
Organizers: | M. Bär, H. Engel, M. Falcke, M. Hauser, A. S. Mikhailov, P. Plath, H. Stark |
Address: | Richard-Willstätter-Haus, Faradayweg 10, 14195 Berlin-Dahlem. (Click here for a description how to get there.) |
For information please contact Oliver Rudzick, Tel. (030) 8413 5300, rudzick@fhi-berlin.mpg.de.
Atsushi Tero
(Hokkaido University, Sapporo, Japan)
Traffic-adaptive networking by a real amoebae of Physarum
[Abstract]
Toshiyuki Nakagaki
(Hokkaido University, Sapporo, Japan)
Amoebae anticipate periodic events
[Abstract]
Takao Ohta
(Department of Physics, Kyoto University, Japan)
Turing patterns in three dimensions
[Abstract]
Karsten Kruse
(Theoretische Physik, Universität des Saarlandes)
Active behavior of the cytoskeleton
[Abstract]
Peter Tass
(Institut für Neurowissenschaften und Biophysik, Forschungszentrum Jülich)
Model based development of desynchronizing brain stimulation techniques
[Abstract]
Pablo Kaluza
(Fritz-Haber-Institut der MPG)
Evolutionary design of complex functional networks
[Abstract]
Hans-Günther Döbereiner
(Institut für Biophysik, Universität Bremen)
Dynamic Phase Transitions and Collective Modes in Cell Spreading
[Abstract]
Hiroya Nakao
(Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin)
Phase coherence in an ensemble of uncoupled nonlinear oscillators induced by correlated noise
[Abstract]
Stefan Luther
(Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen)
Noninvasive adaptive multisite pacing of the heart
Abstract:
Spatially extended excitable media like cardiac tissue exhibit defect
(or phase singularity) mediated turbulence in terms of irregular wave
fronts or turbulent spiral dynamics. In heart dynamics this spatio-
temporal chaotic state corresponds to an electro-mechanical
malfunction of the heart and may result in sudden cardiac death. Low
frequency arrhythmias (up to 4 Hz) can be terminated gently and
effectively by pacing from a single site only. It has been
demonstrated, that the termination of high frequency - and often
lethal - arrhythmias is possible, but requires a very large number of
pacing sites.
Pacing from many sites could not be achieved yet, because installing
and connecting many leads may damage the contracting heart.
Here we show, that multisite pacing can be achieved non-invasively by
applying a pulsed low-energy electric field to the cardiac tissue.
We found in canine heart preparations that such a pulsed far-field
may result in the emission of waves from tissue heterogeneities,
which are anatomical objects of various sizes present within the
cardiac muscle. How many of these objects may act as a wave source
depends on the electric field strength. We demonstrate that this
approach can be used to effectively terminate turbulent spiral
dynamics in cardiac tissue.
Wolffram Schröer
(Institut für Anorganische und Physikalische Chemie, Universität Bremen)
Criticality and corresponding states in ionic systems
[Abstract]
Download the seminar program as PDF (ca. 40 kB)
last modified: January 30, 2008 / Oliver Rudzick