Fritz Haber Institute of the Max Planck Society
EU Marie Curie RTN "Universal Principles of Pattern Formation"
DFG Collaborative Research Center 555 "Complex Nonlinear Processes"
Fifth International Symposium
Engineering of Chemical Complexity
Berlin, May 25-27, 2008
Program and Organization: G. Ertl, A. S. Mikhailov
The aim of this meeting is to review current perspectives for design, manipulation and efficient control of self-organizing complex chemical systems, ranging from biotechnology and reactive nanostructures to macroscopic pattern formation in chemical reactors. Both experimental studies of such phenomena and their mathematical modeling will be discussed. Possible technological applications of self-organization phenomena shall be considered.
Invited Speakers
Download a printer-friendly version of the program (PDF, ca. 62kB).
16:00 – 20:00 Arrival and registration
8:45 Opening
Session chair: P. De Kepper
9:00
R. Kapral
(Toronto, Canada)
Twisting vortex filaments
[Abstract]
9:35
O. Steinbock
(Tallahassee, USA)
Three-dimensional wave patterns in excitable systems
[Abstract]
10:10
M. Hauser
(Magdeburg, Germany)
Manipulating scroll rings by an external electric current
[Abstract]
10:45 – 11:15 Coffee Break
Session chair: J. Hudson
11:15
E. Bodenschatz
(Göttingen, Germany)
Interplay between symmetry breaking elements in a pattern forming system
[Abstract]
11:50
Y. Nishiura
(Sapporo, Japan)
Sensitivity of localized waves to the geometry of heterogeneity
[Abstract]
12:25 – 14:00 Lunch
Session chair: H. Yokoyama
14:00
I. Epstein
(Waltham, USA)
Cross-diffusion effects on pattern formation in reactive systems
[Abstract]
14:35
P. De Kepper
(Bordeaux, France)
Pattern formation in the Ferrocyanide-Iodate-Sulfite reaction: the role of low mobility weak acid functions in the gel reactors
[Abstract]
15:10
A. De Wit
(Brussels, Belgium)
Dynamics of A+B->C reaction fronts in the presence of buoyancy-induced convection
[Abstract]
15:45 – 16:15 Coffee break
Session chair: I. Epstein
16:15
K. Yoshikawa
(Kyoto, Japan)
Self-running droplet: emergence of directional, revolutional and pseudopodial motions
[Abstract]
16:50
M. Falcke
(Berlin, Germany)
Modelling cell motility: motion from chemistry
[Abstract]
17:25
F. Sagués
(Barcelona, Spain)
Physics of colloids: from collective assemblies to single swimmers
[Abstract]
Session chair: Y. Nishiura
9:00
P. Gaspard
(Brussels, Belgium)
Nonequilibrium chemical clocks at the nanoscale
[Abstract]
9:35
H. Yokoyama
(Tsukuba, Japan)
Collective molecular motor using liquid crystallinity: exploration into the molecular origin
[Abstract]
10:10
A. S. Mikhailov
(Berlin, Germany)
Nonlinear elastic dynamics in molecular machines
[Abstract]
10:45 – 11:15 Coffee Break
Session chair: P. Plath
11:15
Y. Kevrekidis
(Princeton, USA)
Equation free and variable free computations for complex systems
[Abstract]
11:50
B. Fiedler
(Berlin, Germany)
Delay feedback control of single mode rotating waves:
opportunities and limitations
[Abstract]
12:25 – 14:00 Lunch
Session chair: E. Schöll
14:00
R. Imbihl
(Hannover, Germany)
Stationary patterns vs. dynamic mass transport: potassium redistribution on a catalytic surface
[Abstract]
14:35
H. H. Rotermund
(Halifax, Canada)
Putting pitting corrosion under a magnifying glass
[Abstract]
15:10
K. Krischer
(Munich, Germany)
Impact of fluctuations on oscillatory reactions on nanoelectrodes
Abstract:
Vladimir Garcia-Morales, Tahmineh Pourrostami and Katharina Krischer
Technische Universität München, Physik Department E19, James-Franck-Str. 1
D-85748 Garching
Electrochemical reactions often exhibit oscillations when driven far from thermodynamic equilibrium. In macroscopic systems, such oscillations are described by nonlinear differential equations which rule the time evolution of the chemical concentrations and the double layer potential according to the laws of electrochemical kinetics. Such a macroscopic description does not take into account molecular fluctuations which become significant when nano-sized electrodes are considered. To quantify the effect of fluctuations we have extended Gillespie’s algorithm to electrochemical systems (in which rate constants depend on time through the double layer potential). Simulations using this algorithm allow the evolution of the time autocorrelation function for each of the dynamical variables to be calculated and its behavior as a function of system size and of the distance to a Hopf bifurcation to be studied. We have performed a detailed stochastic analysis of electrochemical oscillations that have been recently observed for H2O2 reduction on a Pt electrode in an acidic solution when a small amount of halide ions is added to the solution. We also present first experiments that have been carried out on the same system with Pt-nanoelectrodes.
[close abstract]
[go to the top of the page]
15:45 – 16:15 Coffee Break
Session chair: L. Schimansky-Geier
16:15
H. Engel
(Berlin, Germany)
Rotating excitation waves in circular domains
[Abstract]
16:50
M. Marek
(Prague, Czech Republic)
Reactors with storage of components on catalyst surface for exhaust gases of cars
[Abstract]
17:25
C. Beta
(Potsdam, Germany)
Pattern formation in chemotaxis and cell motility
[Abstract]
18:00 – 18:30 Poster session
19:00 Dinner
Session chair: P. Gaspard
9:00
Y. Kuramoto
(Kyoto, Japan)
Two-step phase reduction for large populations of oscillators with noise
[Abstract]
9:35
J. Hudson
(Charlottesville, USA)
Engineering complex dynamical structures in populations of chemical oscillators
[Abstract]
10:10
P. G. Sørensen
(Copenhagen, Denmark)
Dynamical quorum sensing in yeast cells
[Abstract]
10:45 – 11:15 Coffee Break
Session chair: Y. Kuramoto
11:15
K. Showalter
(Morgantown, USA)
Population density dependent behavior of discrete chemical oscillators
[Abstract]
11:50
M. Bär
(Berlin, Germany)
Effective medium theory and percolation threshold for front propagation in heterogeneous reaction-diffusion systems
[Abstract]
12:25
G. Ertl
(Berlin, Germany)
Self-organization in surface reactions - how it started
13:00 Closing
Posters will be presented in the Ballsaal
last modified: May 23, 2008 / Oliver Rudzick