DFG-Sonderforschungsbereich 555 "Komplexe Nichtlineare Prozesse"
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Hahn-Meitner-Institut, Humboldt-Universität zu Berlin, Otto-von-Guericke-Universität Magdeburg, Physikalisch-Technische Bundesanstalt, Technische Universität Berlin, Universität Potsdam
Seminar
"Complex Nonlinear Processes
in Chemistry and Biology"
Honorary Chairman: Gerhard Ertl
Organizers: | M. Bär, B. Blasius, H. Engel, M. Falcke, Th. Höfer, A. S. Mikhailov, S. C. Müller, H. H. Rotermund |
Address: | Richard-Willstätter-Haus, Faradayweg 10, 14195 Berlin-Dahlem. (Click here for a description how to get there.) |
For information please contact Oliver Rudzick, Tel. (030) 8413 5300, rudzick@fhi-berlin.mpg.de.
Thilo Gross
(Institut für Physik, Universität Potsdam)
Generalized models: a new tool for the investigation of nonlinear systems
Luca Mariani
(Institut für Biologie, Humboldt-Universität zu Berlin)
Stochastic gene expression in Th2 cell population:
a mathematical model for IL4 response dynamics
Marcus Hauser
(Institut für Experimentelle Physik, Universität
Magdeburg)
Nonlinear dynamics in natural and biomimetic enzyme systems
Uwe Thiele
(Max-Planck-Institut für Physik komplexer Systeme, Dresden)
Structure formation in thin liquid films:
Beyond the case of a single evolution equation [Abstract]
Mitsugu Matsushita
(Department of Physics, Chuo University, Tokyo)
Colony formation in bacteria - experiments and modeling [Abstract]
Oliver Rudzick
(Fritz-Haber-Institut, Berlin)
Trapping of waves and twisted spirals in forced oscillatory media: Results for the CGLE and the catalytic CO oxidation on Pt(110)
Abstract:
A new kind of nonlinear nonequilibrium patterns - twisted spiral
waves - is predicted for periodically forced oscillatory
reaction-diffusion media. We show furthermore that, in such media,
spatial regions with modified local properties may act as traps
where propagating waves can be stored and released in a controlled
way. Underlying both phenomena is the effect of the
wavelength-dependent propagation reversal of traveling phase
fronts, always possible when homogeneous oscillations are modulationally stable
without forcing. The analysis is performed using as a model the
complex Ginzburg-Landau equation, applicable for
reaction-diffusion systems in the vicinity of a supercritical Hopf bifurcation.
As an example for a realistic model describing a reaction-diffusion system
we present numerical results obtained with the Krischer-Eiswirth-Ertl model
for the catalytic CO oxidation on Pt(110). Using a temperature-dependent variant of the model
it is demonstrated that wave propagation reversal is present for subharmonic forcing as well as for
superharmonic forcing.
Inhomogeneities of the surface temperature can be used to construct wave traps in 1d and 2d.
Michal Or-Guil
(Institut für Theoretische Biologie,
Humboldt-Universität zu Berlin)
Antigen processing by proteasomes and its influence on killer T cell responses - mathematical models
Download the seminar program as PDF (ca. 52 kB)
last modified: January 20, 2006 / Oliver Rudzick